Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.953
Filtrar
1.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611717

RESUMO

In the present work, the synthesis of new ethacrynic acid (EA) derivatives containing nitrogen heterocyclic, urea, or thiourea moieties via efficient and practical synthetic procedures was reported. The synthesised compounds were screened for their anti-proliferative activity against two different cancer cell lines, namely, HL60 (promyelocytic leukaemia) and HCT116 (human colon carcinoma). The results of the in vitro tests reveal that compounds 1-3, 10, 16(a-c), and 17 exhibit potent anti-proliferative activity against the HL60 cell line, with values of the percentage of cell viability ranging from 20 to 35% at 1 µM of the drug and IC50 values between 2.37 µM and 0.86 µM. Compounds 2 and 10 showed a very interesting anti-proliferative activity of 28 and 48% at 1 µM, respectively, against HCT116. Two PyTAP-based fluorescent EA analogues were also synthesised and tested, showing good anti-proliferative activity. A test on the drug-likeness properties in silico of all the synthetised compounds was performed in order to understand the mechanism of action of the most active compounds. A molecular docking study was conducted on two human proteins, namely, glutathione S-transferase P1-1 (pdb:2GSS) and caspase-3 (pdb:4AU8) as target enzymes. The docking results show that compounds 2 and 3 exhibit significant binding modes with these enzymes. This finding provides a potential strategy towards developing anticancer agents, and most of the synthesised and newly designed compounds show good drug-like properties.


Assuntos
Antineoplásicos , Ureia , Humanos , Tioureia/farmacologia , Ácido Etacrínico , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Células HL-60 , Nitrogênio
2.
Inorg Chem ; 63(16): 7520-7539, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38590210

RESUMO

A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 µM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Tioureia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Tioureia/química , Tioureia/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Estrutura Molecular , Furanos/química , Furanos/farmacologia , Furanos/síntese química , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Chlorocebus aethiops , Espécies Reativas de Oxigênio/metabolismo , Células Vero , Relação Estrutura-Atividade
3.
Biomed Pharmacother ; 174: 116544, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599058

RESUMO

The current study was designed to investigate the potential of a synthetic therapeutic agent for better management of pain and inflammation, exhibiting minimal to non-existent ulcerogenic effects. The effect of 1-(2-chlorobenzoyl)-3-(2,3-dichlorophenyl) thiourea was assessed through model systems of nociception and anti-inflammatory activities in mice. In addition, the ulcerogenic potential was evaluated in rats using the NSAID-induced pyloric ligation model, followed by histopathological and biochemical analysis. The test was conducted on eight groups of albino rats, comprising of group I (normal saline), groups II and III (aspirin® at doses of 100 mg/kg and 150 mg/kg, respectively), groups IV and V (indomethacin at doses of 100 mg/kg and 150 mg/kg, respectively), and groups VI, VII, and VIII (lead-compound at 15 mg/kg, 30 mg/kg and 45 mg/kg doses, respectively). Furthermore, molecular docking analyses were performed to predict potential molecular target site interactions. The results showed that the lead-compound, administered at doses of 15, 30, and 45 mg/kg, yielded significant reductions in chemically and thermally induced nociceptive pain, aligning with the levels observed for aspirin® and tramadol. The compound also effectively suppressed inflammatory response in the carrageenan-induced paw edema model. As for the ulcerogenic effects, the compound groups displayed no considerable alterations compared to the aspirin® and indomethacin groups, which displayed substantial increases in ulcer scores, total acidity, free acidity, and gastric juice volume, and a decrease in gastric juice pH. In conclusion, these findings suggest that our test compound exhibits potent antinociceptive, anti-inflammatory properties and is devoid of ulcerogenic effects.


Assuntos
Inflamação , Simulação de Acoplamento Molecular , Nociceptividade , Úlcera Gástrica , Tioureia , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/patologia , Úlcera Gástrica/tratamento farmacológico , Tioureia/análogos & derivados , Tioureia/farmacologia , Masculino , Nociceptividade/efeitos dos fármacos , Camundongos , Inflamação/tratamento farmacológico , Inflamação/patologia , Ratos , Ratos Wistar , Analgésicos/farmacologia , Analgésicos/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Simulação por Computador , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Indometacina/farmacologia , Dor/tratamento farmacológico , Dor/induzido quimicamente , Dor/patologia , Anti-Inflamatórios/farmacologia
4.
Mol Metab ; 83: 101921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527647

RESUMO

Identification of new mechanisms mediating insulin sensitivity is important to allow validation of corresponding therapeutic targets. In this study, we first used a cellular model of skeletal muscle cell iron overload and found that endoplasmic reticulum (ER) stress and insulin resistance occurred after iron treatment. Insulin sensitivity was assessed using cells engineered to express an Akt biosensor, based on nuclear FoxO localization, as well as western blotting for insulin signaling proteins. Use of salubrinal to elevate eIF2α phosphorylation and promote the unfolded protein response (UPR) attenuated iron-induced insulin resistance. Salubrinal induced autophagy flux and its beneficial effects on insulin sensitivity were not observed in autophagy-deficient cells generated by overexpressing a dominant-negative ATG5 mutant or via knockout of ATG7. This indicated the beneficial effect of salubrinal-induced UPR activation was autophagy-dependent. We translated these observations to an animal model of systemic iron overload-induced skeletal muscle insulin resistance where administration of salubrinal as pretreatment promoted eIF2α phosphorylation, enhanced autophagic flux in skeletal muscle and improved insulin responsiveness. Together, our results show that salubrinal elicited an eIF2α-autophagy axis leading to improved skeletal muscle insulin sensitivity both in vitro and in mice.


Assuntos
Autofagia , Cinamatos , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Resistência à Insulina , Tioureia , Tioureia/análogos & derivados , Resposta a Proteínas não Dobradas , Animais , Tioureia/farmacologia , Cinamatos/farmacologia , Autofagia/efeitos dos fármacos , Camundongos , Fator de Iniciação 2 em Eucariotos/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fosforilação , Masculino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Salicilatos/farmacologia , Camundongos Endogâmicos C57BL , Ferro/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Sobrecarga de Ferro/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Future Med Chem ; 16(6): 497-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372209

RESUMO

Background: Unsymmetrical thioureas 1-20 were synthesized and then characterized by various spectroscopy techniques such as UV, IR, fast atom bombardment (FAB)-MS, high-resolution FAB-MS, 1H-NMR and 13C-NMR. Methods: Synthetic compounds 1-20 were tested for their ability for antioxidant, lipoxygenase and xanthine oxidase activities. Results: Compounds 1, 2, 9, 12 and 15 exhibited strong antioxidant potential, whereas compounds 1-3, 9, 12, 15 and 19 showed good to moderate lipoxygenase activity. Ten compounds demonstrated moderate xanthine oxidase inhibition. Conclusion: Compound 15 displayed the highest potency among the series, exhibiting good antioxidant, lipoxygenase and xanthine oxidase activities. Theoretical calculations using density functional theory and molecular docking studies supported the experimental findings, indicating the potential of the synthesized compounds as potent antioxidants, lipoxygenases and xanthine oxidase agents.


Assuntos
Antioxidantes , Lipoxigenase , Antioxidantes/química , Simulação de Acoplamento Molecular , Xantina Oxidase/química , Xantina Oxidase/metabolismo , Inibidores Enzimáticos/química , Tioureia/farmacologia , Tioureia/química , Relação Estrutura-Atividade
6.
Int J Biol Macromol ; 263(Pt 1): 130231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368975

RESUMO

Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.


Assuntos
Amantadina , Tioureia , Humanos , Tioureia/farmacologia , Tioureia/química , Células HEK293 , Simulação de Acoplamento Molecular , Amantadina/farmacologia , DNA/química , Elastase Pancreática
7.
Drug Dev Res ; 85(1): e22143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349267

RESUMO

The effectiveness of a new series of thiopyrimidine and thiourea containing sulfonamides moieties was tested on HCT-116, MCF-7, HepG2, and A549. HepG2 cell line was the one that all the new derivatives affected the most. The greatest potent compounds against the four HepG2, HCT116, MCF-7, and A549 cell lines were 8f and 8g with IC50 = 4.13, 6.64, 5.74, 6.85 µM and 4.09, 4.36, 4.22, 7.25 µM correspondingly. Compound 8g exhibited higher activity than sorafenib against HCT116 and MCF-7 but exhibited lower activity against HepG2 and A549. Moreover, compounds 8f and 8g exhibited higher activities than erlotinib on HepG2, HCT116, and MCF-7 but demonstrated lower activity on A549. The most potent cytotoxic derivatives 6f, 6g, 8c, 8d, 8e, 8f, and 8g were examined on normal VERO cell lines. Our derivatives have low toxicity on VERO cells with IC50 values ranging from 32.05 to 53.15 µM. Additionally, all compounds were assessed for dual VEGFR-2 and EGFRT790M inhibition effects. Compounds 8f and 8g were the most potent derivatives inhibited VEGFR-2 at IC50 value of 0.88 and 0.90 µM, correspondingly. As well, derivatives 8f and 8g could inhibit EGFRT790M demonstrating strongest effects with IC50 = 0.32 and 0.33 µM sequentially. Additionally, the greatest active derivatives ADMET profile was evaluated in relationship with sorafenib and erlotinib as reference agents. The data attained from docking were greatly related to that achieved from the biological testing.


Assuntos
Neoplasias Pulmonares , Tioureia , Chlorocebus aethiops , Animais , Tioureia/farmacologia , Receptores ErbB , Cloridrato de Erlotinib , Sorafenibe , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células Vero , Mutação , Inibidores de Proteínas Quinases/farmacologia , Sulfanilamida
8.
Arch Pharm (Weinheim) ; 357(5): e2300557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321839

RESUMO

A series of sulfonyl thioureas 6a-q containing a benzo[d]thiazole ring with an ester functional group was synthesized from corresponding substituted 2-aminobenzo[d]thiazoles 3a-q and p-toluenesulfonyl isothiocyanate. They had remarkable inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO)-A, and MAO-B. Among thioureas, several compounds had notable activity in the order of 6k > 6 h > 6c (AChE), 6j > 6g > 6k (BChE), 6k > 6g > 6f (MAO-A), and 6i > 6k > 6h (MAO-B). Compound 6k was an inhibitor of interest due to its potent or good activity against all studied enzymes, with IC50 values of 0.027 ± 0.008 µM (AChE), 0.043 ± 0.004 µM (BChE), 0.353 ± 0.01 µM (MAO-A), and 0.716 ± 0.02 µM (MAO-B). This inhibitory capacity was comparable to that of the reference drugs for each enzyme. Kinetic studies of two compounds with potential activity, 6k (against AChE) and 6j (against BChE), had shown that both 6k and 6j followed competitive-type enzyme inhibition, with Ki constants of 24.49 and 12.16 nM, respectively. Induced fit docking studies for enzymes 4EY7, 7BO4, 2BXR, and 2BYB showed active interactions between sulfonyl thioureas of benzo[d]thiazoles and the residues in the active pocket with ligands 6k, 6i, and 6j, respectively. The stability of the ligand-protein complexes while each ligand entered the active site of each enzyme (4EY7, 7BO4, 2BXR, or 2BYB) was confirmed by molecular dynamics simulations.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Monoaminoxidase/metabolismo , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Tioureia/farmacologia , Tioureia/química , Tioureia/síntese química , Relação Dose-Resposta a Droga , Benzotiazóis/farmacologia , Benzotiazóis/química , Benzotiazóis/síntese química , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química
9.
J Physiol Biochem ; 80(2): 337-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336929

RESUMO

Inositol-requiring enzyme-1 (IRE1) is the master regulator of the unfolded protein response pathway, associated with the endoplasmic reticulum (ER) in sensing and regulating cell stress. The activity of IRE1 is highly explored and well-characterized in cancer and other cells. However, the IRE1 molecular mechanism in chondrocytes is poorly understood. The present study explored the effect of IRE1 on chondrocytes regarding its chondrogenic gene expression and its correlation with different cellular pathways and cell behavior. Chondrocytes transfected with the cDNA of IRE1 reduced the expression of type II collagen, disrupting chondrocyte differentiation as confirmed by western blotting and immunofluorescence. Upon siRNA treatment, the influence of IRE1 on chondrocyte differentiation is restored by reviving the normal expression of type II collagen. Different molecular pathways were explored to investigate the role of IRE1 in causing chondrocyte dedifferentiation. However, we found no significant correlation, as IRE1 induces dedifferentiation through independent pathways. In response to various endoplasmic reticulum (ER) agonists (2-deoxy-D-glucose), and ER stress antagonists (tauroursodeoxycholic acid and salubrinal), IRE1 overexpression did not affect GRP78/94, as implicated in the pathogenesis of ER stress. Moreover, when IRE1 overexpression was correlated with the inflammation pathway, nuclear factor-kappa B (NFκB), IRE1 substantially increased the expression of p50 while decreasing the expression of nuclear factor kappa light polypeptide alpha (IκBα). These results suggest that IRE1 induces dedifferentiation in chondrocytes by modulating inflammatory pathways that cause dedifferentiation by disrupting type II collagen expression.


Assuntos
Desdiferenciação Celular , Condrócitos , Colágeno Tipo II , Estresse do Retículo Endoplasmático , Endorribonucleases , Complexos Multienzimáticos , NF-kappa B , Proteínas Serina-Treonina Quinases , Tioureia/análogos & derivados , Condrócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , NF-kappa B/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Cinamatos/farmacologia , Tioureia/farmacologia , Células Cultivadas , Transdução de Sinais , Chaperona BiP do Retículo Endoplasmático
10.
Plant Physiol Biochem ; 207: 108320, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183901

RESUMO

Water stress (WS) poses a significant threat to global food and energy security by adversely affecting soybean growth and nitrogen metabolism. This study explores the synergistic effects of exogenous salicylic acid (SA, 0.5 mM) and thiourea (TU, 400 mg L-1), potent plant growth regulators, on soybean responses under WS conditions. The treatments involved foliar spraying for 3 days before inducing WS by reducing soil moisture to 50% of field capacity, followed by 2 weeks of cultivation under normal or WS conditions. WS significantly reduced plant biomass, chlorophyll content, photosynthetic efficiency, water status, protein content, and total nitrogen content in roots and leaves. Concurrently, it elevated levels of leaf malondialdehyde, H2O2, proline, nitrate, and ammonium. WS also triggered an increase in antioxidant enzyme activity and osmolyte accumulation in soybean plants. Application of SA and TU enhanced the activities of key enzymes crucial for nitrogen assimilation and amino acid synthesis. Moreover, SA and TU improved plant growth, water status, chlorophyll content, photosynthetic efficiency, protein content, and total nitrogen content, while reducing oxidative stress and leaf proline levels. Indeed, the simultaneous application of SA and TU demonstrated a heightened impact compared to their separate use, suggesting a synergistic interaction. This study underscores the potential of SA and TU to enhance WS tolerance in soybean plants by modulating nitrogen metabolism and mitigating oxidative damage. These findings hold significant promise for improving crop productivity and quality in the face of escalating water limitations due to climate change.


Assuntos
Antioxidantes , Nitrogênio , Antioxidantes/metabolismo , Glycine max , Desidratação , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Tioureia/farmacologia , Peróxido de Hidrogênio/metabolismo , Clorofila/metabolismo , Plantas/metabolismo , Prolina/metabolismo
11.
Am J Physiol Cell Physiol ; 326(3): C905-C916, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223930

RESUMO

We studied urea, thiourea, and methylurea transport and interaction in human red blood cells (RBCs) under conditions of self-exchange (SE), net efflux (NE), and net influx (NI) at pH 7.2. We combined four methods, a four-centrifuge technique, the Millipore-Swinnex filtering technique, the continuous flow tube method, and a continuous pump method to measure the transport of the 14C-labeled compounds. Under SE conditions, both urea and thiourea show perfect Michaelis-Menten kinetics with half-saturation constants, K½,SE (mM), of ≈300 (urea) and ≈20 (thiourea). The solutes show no concentration-dependent saturation under NE conditions. Under NI conditions, transport displays saturation or self-inhibition kinetics with a K½,NI (mM) of ≈210 (urea) and ≈20 (thiourea). Urea, thiourea, and methylurea are competitive inhibitors of the transport of analog solutes. This study supports the hypothesis that the three compounds share the same urea transport system (UT-B). UT-B functions asymmetrically as it saturates from the outside only under SE and NI conditions, whereas it functions as a high-capacity channel-like transporter under NE conditions. When the red blood cell enters the urea-rich kidney tissue, self-inhibition reduces the urea uptake in the cell. When the cell leaves the kidney, the channel-like function of UT-B implies that intracellular urea rapidly equilibrates with external urea. The net result is that the cell during the passage in the kidney capillaries carries urea to the kidney to be excreted while the urea transfer from the kidney via the bloodstream is minimized.NEW & NOTEWORTHY The kinetics of urea transport in red blood cells was determined by means of a combination of four methods that ensures a high time resolution. In the present study, we disclose that the urea transporter UT-B functions highly asymmetric being channel-like with no saturation under conditions of net efflux and saturable under conditions of net influx and self-exchange in the concentration range 1-1,000 mM (pH 7.2 and 25-38 °C).


Assuntos
Compostos de Metilureia , Transportadores de Ureia , Ureia , Humanos , Tioureia/farmacologia , Eritrócitos
12.
J Biomol Struct Dyn ; 42(2): 1047-1063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029768

RESUMO

Angiogenesis is mediated by the vascular endothelial growth factor (VEGF) that plays a key role in the modulation of progression, invasion and metastasis, related to solid tumors and hematological malignancies. Several small-molecule VEGFR-2 inhibitors are marketed, but their usage is restricted to specific cancers due to severe toxicities. Therefore, cost-effective novel small molecule VEGFR-2 inhibitors may be an alternative to overcome these adverse effects. Here, a set of thiourea-based VEGFR-2 inhibitors were considered for a combined fragment-based QSAR technique, structure-based molecular docking followed by molecular dynamics simulation studies to acquire insights into the key structural attributes and the binding pattern of enzyme-ligand interactions. Noticeably, amine-substituted quinazoline phenyl ring and a higher number of nitrogen atoms, and the hydrazide function in the molecular structure are crucial for VEGFR-2 inhibition whereas methoxy groups are detrimental to VEGFR-2 inhibition. The MD simulation study of sorafenib and thiourea derivatives explored the significance of urea and thiourea moiety binding at VEGFR-2 active site that can be utilized further in the future to design molecules for greater binding stability and better VEGFR-2 selectivity. Therefore, such findings can be beneficial for the development of newer VEGFR-2 inhibitors for further refinement to acquire better therapeutic efficacy.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Fator A de Crescimento do Endotélio Vascular , Estrutura Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Tioureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Antineoplásicos/química , Proliferação de Células
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 305-315, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436497

RESUMO

Inhibition of Helicobacter pylori urease is an effective method in the treatment of several gastrointestinal diseases in humans. This bacterium plays an important role in the pathogenesis of gastritis and peptic ulceration. Considering the presence of cysteine and N-arylacetamide derivatives in potent urease inhibitors, here, we designed hybrid derivatives of these pharmacophores. Therefore, cysteine-N-arylacetamide derivatives 5a-l were synthesized through simple nucleophilic reactions with good yield. In vitro urease inhibitory activity assay of these compounds demonstrated that all newly synthesized compounds exhibited high inhibitory activity (IC50 values = 0.35-5.83 µM) when compared with standard drugs (thiourea: IC50 = 21.1 ± 0.11 µM and hydroxyurea: IC50 = 100.0 ± 0.01 µM). Representatively, compound 5e with IC50 = 0.35 µM was 60 times more potent than strong urease inhibitor thiourea. Enzyme kinetic study of this compound revealed that compound 5e is a competitive urease inhibitor. Moreover, a docking study of compound 5e was performed to explore crucial interactions at the urease active site. This study revealed that compound 5e is capable to inhibit urease by interactions with two crucial residues at the active site: Ni and CME592. Furthermore, a molecular dynamics study confirmed the stability of the 5e-urease complex and Ni chelating properties of this compound. It should be considered that, in the following study, the focus was placed on jack bean urease instead of H. pylori urease, and this was acknowledged as a limitation.


Assuntos
Helicobacter pylori , Urease , Humanos , Urease/química , Urease/metabolismo , Cisteína/farmacologia , Simulação de Acoplamento Molecular , Helicobacter pylori/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Tioureia/química , Tioureia/farmacologia , Relação Estrutura-Atividade
14.
Future Med Chem ; 15(18): 1703-1717, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814798

RESUMO

Background: Quinoline and acyl thiourea scaffolds have major chemical significance in medicinal chemistry. Quinoline-based acyl thiourea derivatives may potentially target the urease enzyme. Materials & methods: Quinoline-based acyl thiourea derivatives 1-26 were synthesized and tested for urease inhibitory activity. Results: 19 derivatives (1-19) showed enhanced urease enzyme inhibitory potential (IC50 = 1.19-18.92 µM) compared with standard thiourea (IC50 = 19.53 ± 0.032 µM), whereas compounds 20-26 were inactive. Compounds with OCH3, OC2H5, Br and CH3 on the aryl ring showed significantly greater inhibitory potential than compounds with hydrocarbon chains of varying length. Molecular docking studies were conducted to investigate ligand interactions with the enzyme's active site. Conclusion: The identified hits can serve as potential leads against the drug target urease in advanced studies.


Assuntos
Inibidores Enzimáticos , Quinolinas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Urease/química , Urease/metabolismo , Cinética , Simulação de Acoplamento Molecular , Tioureia/química , Tioureia/farmacologia , Aminoquinolinas , Quinolinas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
15.
Future Med Chem ; 15(19): 1757-1772, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37842772

RESUMO

Aims: The current study aimed to develop new thiourea derivatives as potential α-glucosidase inhibitors for the management of hyperglycemia in patients of Type 2 diabetes, with a focus on identifying safer and more effective antidiabetic agents. Materials & methods: New thiourea derivatives (1-16) were synthesized through single-step chemical transformation and evaluated for in vitro α-glucosidase inhibition. Kinetic studies identified the mode of inhibition, free energy and type of interactions were analyzed through density functional theory and molecular docking. Results & conclusion: Compound 5 was identified as the most potent, noncompetitive and noncytotoxic inhibitor of α-glucosidase enzyme with a half-maximal inhibitory concentration of 24.62 ± 0.94 µM. Computational studies reinforce experimental results, demonstrating significant enzyme interactions via hydrophobic and π-π stacking forces.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Aminopiridinas , Cinética , Teoria da Densidade Funcional , Tioureia/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
16.
Arch Pharm (Weinheim) ; 356(11): e2300269, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602810

RESUMO

Novel benzimidazole thiourea derivatives were designed and synthesized based on sorafenib as a lead compound. The benzimidazole moiety was traded by the pyridine ring to enhance the hydrophobic interaction and retain hydrogen bonding in the hinge region, while lipophilic moieties with different bulkiness were employed in the deep hydrophobic pocket for better hydrophobic interactions. Thiourea as a urea bioisostere was also utilized. Substantial activity was demonstrated against a leukemia subpanel in an in vitro antitumor screening at the NCI. In the single-dose assay, compounds 7i, 7j, and 7l had a GI%) higher than sorafenib against most leukemia cell lines (GI% = 86.2%-137.1%), while in the five-dose assay, compound 7l outperformed sorafenib against the HL-60(TB) and SR leukemia cell lines in terms of GI50 , TGI, and LC50 . Compound 7l also caused cycle arrest at the G0-G1 and S phases in the HL-60(TB) leukemia cell line and induced apoptosis via elevating the Bax/Bcl-2 ratio and increasing caspases 3, 7, and 9 by 5.1-, 3.2-, and 5.2-fold, respectively. Compounds 7i, 7j, and 7l also inhibited the vascular endothelial growth factor receptor-2 (VEGFR-2), B-Raf(V600E) , and platelet-derived growth factor receptor beta (PDGFR-ß) enzymes with an IC50 range of 0.063-0.44 µM. COMPARE analysis and a molecular docking study were also performed to predict the possible mechanism of action and binding mode, respectively.


Assuntos
Antineoplásicos , Leucemia , Humanos , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular/farmacologia , Inibidores de Proteínas Quinases/química , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Tioureia/farmacologia , Benzimidazóis/química , Proliferação de Células , Estrutura Molecular , Desenho de Fármacos
17.
J Med Chem ; 66(16): 11078-11093, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37466499

RESUMO

The increasing resistance of bacteria to commercially available antibiotics threatens patient safety in healthcare settings. Perturbation of ion homeostasis has emerged as a potential therapeutic strategy to fight against antibacterial resistance and other channelopathies. This study reports the development of 8-aminoquinoline (QN) derivatives and their transmembrane Zn2+ transport activities. Our findings showed that a potent QN-based Zn2+ transporter exhibits promising antibacterial properties against Gram-positive bacteria with reduced hemolytic activity and cytotoxicity to mammalian cells. Furthermore, this combination showed excellent in vivo efficacy against Staphylococcus aureus. Interestingly, this combination prevented bacterial resistance and restored susceptibility of gentamicin and methicillin-resistant S. aureus to commercially available ß-lactam and other antibiotics that had lost their activity against the drug-resistant bacterial strain. Our findings suggest that the transmembrane transport of Zn2+ by QN derivatives could be a promising strategy to combat bacterial infections and restore the activity of other antibiotics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Quinolinas , Infecções Estafilocócicas , Animais , Humanos , Zinco , Ionóforos/uso terapêutico , Tioureia/farmacologia , Tioureia/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Testes de Sensibilidade Microbiana , Mamíferos
18.
Chem Biodivers ; 20(8): e202300626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477542

RESUMO

In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas (1-16) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives (17-32). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50 =8.09±0.58 µM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.


Assuntos
Antioxidantes , Tioureia , Estrutura Molecular , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia , Tioureia/farmacologia , Tioureia/química , Antioxidantes/farmacologia , Antioxidantes/química , Relação Estrutura-Atividade
19.
Biomed Pharmacother ; 164: 114908, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224757

RESUMO

2-Azabicycloalkanes: 2-azabicyclo[2.2.1]heptane and 2-azabicyclo[3.2.1]octane were used as a chiral platform for the construction of a set of 1,2,3-triazole, thiourea, and ebselen derivatives. Cytotoxicity and antiviral activity studies revealed the most promising potency for selected thioureas.


Assuntos
Compostos Organosselênicos , Tioureia , Tioureia/farmacologia , Triazóis/farmacologia , Compostos Organosselênicos/farmacologia , Antivirais/farmacologia , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 250: 115241, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870272

RESUMO

Salinomycin (SAL) is a natural polyether ionophore that exhibits a very broad spectrum of biological effects, ranging from anticancer to antiparasitic activities. Our recent studies have shown that the chemical modification of the SAL biomolecule is a fruitful strategy for generating lead compounds for the development of novel antitrypanosomal agents. As a continuation of our program to develop trypanocidal active lead structures, we synthesized a series of 14 novel urea and thiourea analogs of C20-epi-aminosalinomycin (compound 2b). The trypanocidal and cytotoxic activities of the derivatives were assessed with the mammalian life cycle stage of Trypanosoma brucei and human leukemic HL-60 cells, respectively. The most antitrypanosomal compounds were the two thiourea derivatives 4b (C20-n-butylthiourea) and 4d (C20-phenylthiourea) with 50% growth inhibition (GI50) values of 0.18 and 0.22 µM and selectivity indices of 47 and 41, respectively. As potent SAL derivatives have been shown to induce strong cell swelling in bloodstream forms of T. brucei, the effect of compounds 4b and 4d to increase the cell volume of the parasite was also investigated. Interestingly, both derivatives were capable to induce faster cell swelling in bloodstream-form trypanosomes than the reference compound SAL. These findings support the suggestion that C20-epi-aminosalinomycin derivatives are suitable leads in the rational development of new and improved trypanocidal drugs.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Animais , Humanos , Ureia/farmacologia , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Células HL-60 , Tioureia/farmacologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA